首页> 外文OA文献 >Fluid Models for Kinetic Effects on Coherent Nonlinear Alfven Waves. II. Numerical Solutions
【2h】

Fluid Models for Kinetic Effects on Coherent Nonlinear Alfven Waves. II. Numerical Solutions

机译:相干非线性alfven波动力学效应的流体模型。 II。   数值解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The influence of various kinetic effects (e.g. Landau damping, diffusive andcollisional dissipation, and finite Larmor radius terms) on the nonlinearevolution of finite amplitude Alfvenic wave trains in a finite-beta environmentis systematically investigated using a novel, kinetic nonlinear Schrodinger(KNLS) equation. The dynamics of Alfven waves is sensitive to the sense ofpolarization as well as the angle of propagation with respect to the ambientmagnetic field. Numerical solution for the case with Landau damping reveals theformation of dissipative structures, which are quasi-stationary, S-polarizeddirectional (and rotational) discontinuities which self-organize from parallelpropagating, linearly polarized waves. Parallel propagating circularlypolarized packets evolve to a few circularly polarized Alfven harmonics onlarge scales. Stationary arc-polarized rotational discontinuities form fromobliquely propagating waves. Collisional dissipation, even if weak, introducesenhanced wave damping when beta is very close to unity. Cyclotron motioneffects on resonant particle interactions introduce cyclotron resonance intothe nonlinear Alfven wave dynamics.
机译:使用新颖的动力学非线性薛定inger(KNLS)方程系统地研究了各种动力学效应(例如Landau阻尼,扩散和碰撞耗散以及有限的拉莫尔半径项)对有限振幅Alfvenic波列在有限beta环境中的非线性演化的影响。 Alfven波的动力学对极化感以及相对于环境磁场的传播角度很敏感。对于具有Landau阻尼的情况,数值解法揭示了耗散结构的形成,这些耗散结构是准平稳的,S极化的方向性(和旋转性)不连续性,它们是从平行传播的线性极化波中自组织的。平行传播的圆极化分组在大范围内演化为几个圆极化的Alfven谐波。平稳的电弧极化旋转不连续性由倾斜传播的波形成。当β非常接近于1时,碰撞耗散即使弱,也会引入增强的波衰减。回旋加速器对共振粒子相互作用的运动影响将回旋加速器共振引入非线性阿尔夫文波动力学中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号